What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

What is the greatest number of squares you can make by overlapping three squares?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Which of these dice are right-handed and which are left-handed?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Can you fit the tangram pieces into the outlines of the workmen?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outlines of the candle and sundial?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Make a cube out of straws and have a go at this practical challenge.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outline of these convex shapes?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you fit the tangram pieces into the outline of Granma T?

Can you visualise what shape this piece of paper will make when it is folded?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

An activity centred around observations of dots and how we visualise number arrangement patterns.

What is the shape of wrapping paper that you would need to completely wrap this model?