Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What happens when you try and fit the triomino pieces into these two grids?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outlines of the chairs?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you fit the tangram pieces into the outlines of these clocks?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you fit the tangram pieces into the outline of this telephone?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different triangles can you make on a circular pegboard that has nine pegs?

Move just three of the circles so that the triangle faces in the opposite direction.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of these convex shapes?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these rabbits?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Granma T?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?