What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you fit the tangram pieces into the outline of the child walking home from school?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

A package contains a set of resources designed to develop pupils' mathematical thinking. This package places a particular emphasis on “visualising” and is designed to meet the needs. . . .

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Exchange the positions of the two sets of counters in the least possible number of moves

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of this plaque design?

How many different triangles can you make on a circular pegboard that has nine pegs?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you fit the tangram pieces into the outlines of these people?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of these convex shapes?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the workmen?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?