Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What happens when you try and fit the triomino pieces into these two grids?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

What is the best way to shunt these carriages so that each train can continue its journey?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

How many different triangles can you make on a circular pegboard that has nine pegs?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this plaque design?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?