You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

How many different triangles can you make on a circular pegboard that has nine pegs?

What happens when you try and fit the triomino pieces into these two grids?

Move just three of the circles so that the triangle faces in the opposite direction.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Exchange the positions of the two sets of counters in the least possible number of moves

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

What is the best way to shunt these carriages so that each train can continue its journey?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you split each of the shapes below in half so that the two parts are exactly the same?