This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

What happens when you try and fit the triomino pieces into these two grids?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you find ways of joining cubes together so that 28 faces are visible?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you fit the tangram pieces into the outline of Little Fung at the table?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of the child walking home from school?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Can you fit the tangram pieces into the outline of the telescope and microscope?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?