This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

A package contains a set of resources designed to develop pupils' mathematical thinking. This package places a particular emphasis on “visualising” and is designed to meet the needs. . . .

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Exchange the positions of the two sets of counters in the least possible number of moves

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Move just three of the circles so that the triangle faces in the opposite direction.

What happens when you try and fit the triomino pieces into these two grids?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Which of these dice are right-handed and which are left-handed?

What is the shape of wrapping paper that you would need to completely wrap this model?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you find a way of representing these arrangements of balls?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Square It game for an adult and child. Can you come up with a way of always winning this game?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

An activity centred around observations of dots and how we visualise number arrangement patterns.