Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A package contains a set of resources designed to develop pupils' mathematical thinking. This package places a particular emphasis on “visualising” and is designed to meet the needs. . . .

What can you see? What do you notice? What questions can you ask?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

What is the shape of wrapping paper that you would need to completely wrap this model?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you find a way of representing these arrangements of balls?

What is the greatest number of squares you can make by overlapping three squares?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Exchange the positions of the two sets of counters in the least possible number of moves

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Here are shadows of some 3D shapes. What shapes could have made them?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of Granma T?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Create a pattern on the left-hand grid. How could you extend your pattern on the right-hand grid?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?