This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you fit the tangram pieces into the outlines of the candle and sundial?

Here's a simple way to make a Tangram without any measuring or ruling lines.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Reasoning about the number of matches needed to build squares that share their sides.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Can you fit the tangram pieces into the outline of Granma T?

Can you visualise what shape this piece of paper will make when it is folded?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Square It game for an adult and child. Can you come up with a way of always winning this game?

An activity centred around observations of dots and how we visualise number arrangement patterns.

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of Little Ming?

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these rabbits?