This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this plaque design?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of these rabbits?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you cut up a square in the way shown and make the pieces into a triangle?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Which of these dice are right-handed and which are left-handed?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the workmen?

Here's a simple way to make a Tangram without any measuring or ruling lines.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this sports car?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this junk?

What is the greatest number of squares you can make by overlapping three squares?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Make a cube out of straws and have a go at this practical challenge.

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Reasoning about the number of matches needed to build squares that share their sides.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outlines of the chairs?

This article for teachers describes a project which explores thepower of storytelling to convey concepts and ideas to children.

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.