This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

What is the greatest number of squares you can make by overlapping three squares?

Here's a simple way to make a Tangram without any measuring or ruling lines.

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you cut up a square in the way shown and make the pieces into a triangle?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Here are the six faces of a cube - in no particular order. Here are three views of the cube. Can you deduce where the faces are in relation to each other and record them on the net of this cube?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Exchange the positions of the two sets of counters in the least possible number of moves

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of this junk?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Little Ming?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?