Move just three of the circles so that the triangle faces in the opposite direction.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What happens when you try and fit the triomino pieces into these two grids?

How many different triangles can you make on a circular pegboard that has nine pegs?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Exchange the positions of the two sets of counters in the least possible number of moves

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Here are shadows of some 3D shapes. What shapes could have made them?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Create a pattern on the left-hand grid. How could you extend your pattern on the right-hand grid?

Can you fit the tangram pieces into the outline of the child walking home from school?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?