Here are shadows of some 3D shapes. What shapes could have made them?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

You want to make each of the 5 Platonic solids and colour the faces so that, in every case, no two faces which meet along an edge have the same colour.

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Which of these dice are right-handed and which are left-handed?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

Can you fit the tangram pieces into the outlines of the workmen?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Exchange the positions of the two sets of counters in the least possible number of moves

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Here's a simple way to make a Tangram without any measuring or ruling lines.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Little Ming?

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Exploring and predicting folding, cutting and punching holes and making spirals.

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?