How many different triangles can you make on a circular pegboard that has nine pegs?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What happens when you try and fit the triomino pieces into these two grids?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What is the best way to shunt these carriages so that each train can continue its journey?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outlines of the chairs?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?