Can you split each of the shapes below in half so that the two parts are exactly the same?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

How many different triangles can you make on a circular pegboard that has nine pegs?

What is the greatest number of squares you can make by overlapping three squares?

How many pieces of string have been used in these patterns? Can you describe how you know?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

How many loops of string have been used to make these patterns?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Little Ming?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Granma T?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of these convex shapes?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

Can you fit the tangram pieces into the outline of this goat and giraffe?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of this sports car?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of the telescope and microscope?