How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you find ways of joining cubes together so that 28 faces are visible?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of these rabbits?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you fit the tangram pieces into the outline of this plaque design?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

What happens when you try and fit the triomino pieces into these two grids?

Move just three of the circles so that the triangle faces in the opposite direction.

Can you make a 3x3 cube with these shapes made from small cubes?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this goat and giraffe?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you fit the tangram pieces into the outline of these convex shapes?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Reasoning about the number of matches needed to build squares that share their sides.

Can you fit the tangram pieces into the outline of this sports car?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?