On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

How many different triangles can you make on a circular pegboard that has nine pegs?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Here are shadows of some 3D shapes. What shapes could have made them?

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Here are the six faces of a cube - in no particular order. Here are three views of the cube. Can you deduce where the faces are in relation to each other and record them on the net of this cube?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Make a flower design using the same shape made out of different sizes of paper.

Can you visualise what shape this piece of paper will make when it is folded?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Square It game for an adult and child. Can you come up with a way of always winning this game?

An activity centred around observations of dots and how we visualise number arrangement patterns.

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

Create a pattern on the left-hand grid. How could you extend your pattern on the right-hand grid?

Can you find a way of representing these arrangements of balls?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

What is the shape of wrapping paper that you would need to completely wrap this model?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you find ways of joining cubes together so that 28 faces are visible?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What can you see? What do you notice? What questions can you ask?

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

How many pieces of string have been used in these patterns? Can you describe how you know?

How many loops of string have been used to make these patterns?