We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of these convex shapes?

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Move just three of the circles so that the triangle faces in the opposite direction.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this telephone?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Here are shadows of some 3D shapes. What shapes could have made them?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of these people?

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Can you fit the tangram pieces into the outlines of these clocks?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.