A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outline of Little Ming?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of Mai Ling?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of Granma T?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What happens when you try and fit the triomino pieces into these two grids?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this sports car?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of the rocket?

What is the greatest number of squares you can make by overlapping three squares?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

What is the shape of wrapping paper that you would need to completely wrap this model?

Can you fit the tangram pieces into the outlines of the candle and sundial?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outlines of these people?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you find a way of representing these arrangements of balls?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Can you fit the tangram pieces into the outlines of the workmen?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of the child walking home from school?