Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

What happens when you try and fit the triomino pieces into these two grids?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Little Ming?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different triangles can you make on a circular pegboard that has nine pegs?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of these clocks?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you fit the tangram pieces into the outlines of the workmen?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this goat and giraffe?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of these rabbits?