A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Which of these dice are right-handed and which are left-handed?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of Little Ming?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

An activity centred around observations of dots and how we visualise number arrangement patterns.

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of the rocket?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of these rabbits?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this plaque design?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Granma T?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the chairs?

This article for teachers describes a project which explores thepower of storytelling to convey concepts and ideas to children.

How many different triangles can you make on a circular pegboard that has nine pegs?

Move just three of the circles so that the triangle faces in the opposite direction.

What happens when you try and fit the triomino pieces into these two grids?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?