How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Here are shadows of some 3D shapes. What shapes could have made them?

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Can you cut up a square in the way shown and make the pieces into a triangle?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Move just three of the circles so that the triangle faces in the opposite direction.

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of the chairs?

Here are the six faces of a cube - in no particular order. Here are three views of the cube. Can you deduce where the faces are in relation to each other and record them on the net of this cube?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of these rabbits?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

What is the greatest number of squares you can make by overlapping three squares?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

Exchange the positions of the two sets of counters in the least possible number of moves

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

An activity centred around observations of dots and how we visualise number arrangement patterns.