This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What happens when you try and fit the triomino pieces into these two grids?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many different triangles can you make on a circular pegboard that has nine pegs?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you find ways of joining cubes together so that 28 faces are visible?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you make a 3x3 cube with these shapes made from small cubes?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Can you fit the tangram pieces into the outline of these convex shapes?

What shape is made when you fold using this crease pattern? Can you make a ring design?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?