Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

Can you cut up a square in the way shown and make the pieces into a triangle?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Make a flower design using the same shape made out of different sizes of paper.

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

Can you fit the tangram pieces into the outline of Mai Ling?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you fit the tangram pieces into the outline of these rabbits?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of the rocket?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of these convex shapes?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Here are the six faces of a cube - in no particular order. Here are three views of the cube. Can you deduce where the faces are in relation to each other and record them on the net of this cube?

Can you find ways of joining cubes together so that 28 faces are visible?

Exploring and predicting folding, cutting and punching holes and making spirals.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?