Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outline of Little Ming?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Exchange the positions of the two sets of counters in the least possible number of moves

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Granma T?

What is the greatest number of squares you can make by overlapping three squares?

Move just three of the circles so that the triangle faces in the opposite direction.

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

What happens when you try and fit the triomino pieces into these two grids?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you find a way of representing these arrangements of balls?

Which of these dice are right-handed and which are left-handed?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

Can you fit the tangram pieces into the outlines of the candle and sundial?