Search by Topic

Resources tagged with Divisibility similar to Divisively So:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 56 results

Broad Topics > Numbers and the Number System > Divisibility

problem icon

Divisively So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

problem icon

Ewa's Eggs

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

problem icon

Remainders

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

problem icon

Eminit

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

problem icon

AB Search

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

problem icon

Gaxinta

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

problem icon

Digat

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

problem icon

Powerful Factorial

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

problem icon

Oh! Hidden Inside?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find the number which has 8 divisors, such that the product of the divisors is 331776.

problem icon

Digital Roots

Stage: 2 and 3

In this article for teachers, Bernard Bagnall describes how to find digital roots and suggests that they can be worth exploring when confronted by a sequence of numbers.

problem icon

Remainder

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

problem icon

The Remainders Game

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game that tests your understanding of remainders.

problem icon

Factors and Multiple Challenges

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

problem icon

Factoring Factorials

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the highest power of 11 that will divide into 1000! exactly.

problem icon

Flow Chart

Stage: 3 Challenge Level: Challenge Level:1

The flow chart requires two numbers, M and N. Select several values for M and try to establish what the flow chart does.

problem icon

Square Routes

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many four digit square numbers are composed of even numerals? What four digit square numbers can be reversed and become the square of another number?

problem icon

Expenses

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

problem icon

What an Odd Fact(or)

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you show that 1^99 + 2^99 + 3^99 + 4^99 + 5^99 is divisible by 5?

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

Elevenses

Stage: 3 Challenge Level: Challenge Level:1

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

14 Divisors

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the smallest number with exactly 14 divisors?

problem icon

Just Repeat

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Think of any three-digit number. Repeat the digits. The 6-digit number that you end up with is divisible by 91. Is this a coincidence?

problem icon

Skeleton

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

problem icon

Repeaters

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

problem icon

Dozens

Stage: 3 Challenge Level: Challenge Level:1

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

problem icon

Adding in Rows

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

problem icon

Legs Eleven

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

problem icon

Going Round in Circles

Stage: 3 Challenge Level: Challenge Level:1

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

problem icon

Power Mad!

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

problem icon

American Billions

Stage: 3 Challenge Level: Challenge Level:1

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

problem icon

Knapsack

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

You have worked out a secret code with a friend. Every letter in the alphabet can be represented by a binary value.

problem icon

Peaches Today, Peaches Tomorrow....

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

problem icon

Big Powers

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

problem icon

Differences

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

problem icon

Squaresearch

Stage: 4 Challenge Level: Challenge Level:1

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

problem icon

Multiplication Magic

Stage: 4 Challenge Level: Challenge Level:1

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

LCM Sudoku

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

problem icon

Divisibility Tests

Stage: 3, 4 and 5

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

problem icon

Obviously?

Stage: 4 and 5 Challenge Level: Challenge Level:1

Find the values of n for which 1^n + 8^n - 3^n - 6^n is divisible by 6.

problem icon

Ben's Game

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

problem icon

Mod 3

Stage: 4 Challenge Level: Challenge Level:1

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

problem icon

Check Codes

Stage: 4 Challenge Level: Challenge Level:1

Details are given of how check codes are constructed (using modulus arithmetic for passports, bank accounts, credit cards, ISBN book numbers, and so on. A list of codes is given and you have to check. . . .

problem icon

Transposition Fix

Stage: 4 Challenge Level: Challenge Level:1

Suppose an operator types a US Bank check code into a machine and transposes two adjacent digits will the machine pick up every error of this type? Does the same apply to ISBN numbers; will a machine. . . .

problem icon

Novemberish

Stage: 4 Challenge Level: Challenge Level:1

a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number. (b) Prove that 11^{10}-1 is divisible by 100.

problem icon

What Numbers Can We Make Now?

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

problem icon

Why 24?

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

problem icon

The Chinese Remainder Theorem

Stage: 4 and 5

In this article we shall consider how to solve problems such as "Find all integers that leave a remainder of 1 when divided by 2, 3, and 5."

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .