Have you ever wondered what it would be like to race against Usain Bolt?

Get some practice using big and small numbers in chemistry.

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

Work out the numerical values for these physical quantities.

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Where should runners start the 200m race so that they have all run the same distance by the finish?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

What functions can you make using the function machines RECIPROCAL and PRODUCT and the operator machines DIFF and INT?

Which line graph, equations and physical processes go together?

Which countries have the most naturally athletic populations?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Get further into power series using the fascinating Bessel's equation.

Here are several equations from real life. Can you work out which measurements are possible from each equation?

How would you go about estimating populations of dolphins?

Go on a vector walk and determine which points on the walk are closest to the origin.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Looking at small values of functions. Motivating the existence of the Taylor expansion.

Which dilutions can you make using only 10ml pipettes?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

When you change the units, do the numbers get bigger or smaller?

Build up the concept of the Taylor series

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Look at the advanced way of viewing sin and cos through their power series.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Which units would you choose best to fit these situations?

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Invent scenarios which would give rise to these probability density functions.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Each week a company produces X units and sells p per cent of its stock. How should the company plan its warehouse space?

Match the descriptions of physical processes to these differential equations.

In this short problem, can you deduce the likely location of the odd ones out in six sets of random numbers?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Formulate and investigate a simple mathematical model for the design of a table mat.

Explore the relationship between resistance and temperature

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Analyse these beautiful biological images and attempt to rank them in size order.

How would you design the tiering of seats in a stadium so that all spectators have a good view?

Find the distance of the shortest air route at an altitude of 6000 metres between London and Cape Town given the latitudes and longitudes. A simple application of scalar products of vectors.