Invent scenarios which would give rise to these probability density functions.

Why MUST these statistical statements probably be at least a little bit wrong?

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Here are several equations from real life. Can you work out which measurements are possible from each equation?

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Which line graph, equations and physical processes go together?

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Get some practice using big and small numbers in chemistry.

Which units would you choose best to fit these situations?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

When you change the units, do the numbers get bigger or smaller?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Get further into power series using the fascinating Bessel's equation.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Match the descriptions of physical processes to these differential equations.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Look at the advanced way of viewing sin and cos through their power series.

Build up the concept of the Taylor series

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Work out the numerical values for these physical quantities.

Find the distance of the shortest air route at an altitude of 6000 metres between London and Cape Town given the latitudes and longitudes. A simple application of scalar products of vectors.

Match the charts of these functions to the charts of their integrals.

Explore the relationship between resistance and temperature

Was it possible that this dangerous driving penalty was issued in error?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

What functions can you make using the function machines RECIPROCAL and PRODUCT and the operator machines DIFF and INT?

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

Go on a vector walk and determine which points on the walk are closest to the origin.

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

Each week a company produces X units and sells p per cent of its stock. How should the company plan its warehouse space?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Which dilutions can you make using only 10ml pipettes?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Simple models which help us to investigate how epidemics grow and die out.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Formulate and investigate a simple mathematical model for the design of a table mat.

Looking at small values of functions. Motivating the existence of the Taylor expansion.

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Explore the meaning of the scalar and vector cross products and see how the two are related.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

This problem explores the biology behind Rudolph's glowing red nose.