By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Use your skill and judgement to match the sets of random data.

Why MUST these statistical statements probably be at least a little bit wrong?

How do you choose your planting levels to minimise the total loss at harvest time?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Which countries have the most naturally athletic populations?

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

In this short problem, can you deduce the likely location of the odd ones out in six sets of random numbers?

Invent scenarios which would give rise to these probability density functions.

Simple models which help us to investigate how epidemics grow and die out.

Starting with two basic vector steps, which destinations can you reach on a vector walk?

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Which dilutions can you make using only 10ml pipettes?

Can you make matrices which will fix one lucky vector and crush another to zero?

Go on a vector walk and determine which points on the walk are closest to the origin.

Can you sketch these difficult curves, which have uses in mathematical modelling?

Explore the meaning of the scalar and vector cross products and see how the two are related.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

10 graphs of experimental data are given. Can you use a spreadsheet to find algebraic graphs which match them closely, and thus discover the formulae most likely to govern the underlying processes?

Which line graph, equations and physical processes go together?

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Work out the numerical values for these physical quantities.

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Use vectors and matrices to explore the symmetries of crystals.

Explore the properties of matrix transformations with these 10 stimulating questions.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

Get some practice using big and small numbers in chemistry.

Formulate and investigate a simple mathematical model for the design of a table mat.

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Explore the meaning behind the algebra and geometry of matrices with these 10 individual problems.

Explore the shape of a square after it is transformed by the action of a matrix.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Can you work out which processes are represented by the graphs?

In this short problem, try to find the location of the roots of some unusual functions by finding where they change sign.

Match the descriptions of physical processes to these differential equations.