Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Work out the numerical values for these physical quantities.

Get some practice using big and small numbers in chemistry.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Get further into power series using the fascinating Bessel's equation.

Was it possible that this dangerous driving penalty was issued in error?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Which units would you choose best to fit these situations?

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Which dilutions can you make using only 10ml pipettes?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

When you change the units, do the numbers get bigger or smaller?

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Which line graph, equations and physical processes go together?

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Match the descriptions of physical processes to these differential equations.

Build up the concept of the Taylor series

Look at the advanced way of viewing sin and cos through their power series.

Go on a vector walk and determine which points on the walk are closest to the origin.

Why MUST these statistical statements probably be at least a little bit wrong?

Looking at small values of functions. Motivating the existence of the Taylor expansion.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

How would you go about estimating populations of dolphins?

Invent scenarios which would give rise to these probability density functions.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Explore the relationship between resistance and temperature

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Here are several equations from real life. Can you work out which measurements are possible from each equation?

Formulate and investigate a simple mathematical model for the design of a table mat.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Each week a company produces X units and sells p per cent of its stock. How should the company plan its warehouse space?

What functions can you make using the function machines RECIPROCAL and PRODUCT and the operator machines DIFF and INT?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Explore the meaning of the scalar and vector cross products and see how the two are related.

Match the charts of these functions to the charts of their integrals.

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

Where should runners start the 200m race so that they have all run the same distance by the finish?

Analyse these beautiful biological images and attempt to rank them in size order.