How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

Get further into power series using the fascinating Bessel's equation.

How would you go about estimating populations of dolphins?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Look at the advanced way of viewing sin and cos through their power series.

Was it possible that this dangerous driving penalty was issued in error?

Which line graph, equations and physical processes go together?

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Get some practice using big and small numbers in chemistry.

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Work out the numerical values for these physical quantities.

Match the descriptions of physical processes to these differential equations.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Build up the concept of the Taylor series

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

How do you choose your planting levels to minimise the total loss at harvest time?

Match the charts of these functions to the charts of their integrals.

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Invent scenarios which would give rise to these probability density functions.

Go on a vector walk and determine which points on the walk are closest to the origin.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

What functions can you make using the function machines RECIPROCAL and PRODUCT and the operator machines DIFF and INT?

Why MUST these statistical statements probably be at least a little bit wrong?

Here are several equations from real life. Can you work out which measurements are possible from each equation?

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Use your skill and judgement to match the sets of random data.

Which units would you choose best to fit these situations?

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

When you change the units, do the numbers get bigger or smaller?

Looking at small values of functions. Motivating the existence of the Taylor expansion.

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Where should runners start the 200m race so that they have all run the same distance by the finish?

Analyse these beautiful biological images and attempt to rank them in size order.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Each week a company produces X units and sells p per cent of its stock. How should the company plan its warehouse space?

Formulate and investigate a simple mathematical model for the design of a table mat.

Find the distance of the shortest air route at an altitude of 6000 metres between London and Cape Town given the latitudes and longitudes. A simple application of scalar products of vectors.

Explore the relationship between resistance and temperature

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .