Match the descriptions of physical processes to these differential equations.

Look at the advanced way of viewing sin and cos through their power series.

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

Get further into power series using the fascinating Bessel's equation.

Was it possible that this dangerous driving penalty was issued in error?

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

How would you go about estimating populations of dolphins?

Explore the relationship between resistance and temperature

Here are several equations from real life. Can you work out which measurements are possible from each equation?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Why MUST these statistical statements probably be at least a little bit wrong?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Get some practice using big and small numbers in chemistry.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Invent scenarios which would give rise to these probability density functions.

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Go on a vector walk and determine which points on the walk are closest to the origin.

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Which line graph, equations and physical processes go together?

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Find the distance of the shortest air route at an altitude of 6000 metres between London and Cape Town given the latitudes and longitudes. A simple application of scalar products of vectors.

Build up the concept of the Taylor series

Each week a company produces X units and sells p per cent of its stock. How should the company plan its warehouse space?

Analyse these beautiful biological images and attempt to rank them in size order.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Shows that Pythagoras for Spherical Triangles reduces to Pythagoras's Theorem in the plane when the triangles are small relative to the radius of the sphere.

Can you sketch these difficult curves, which have uses in mathematical modelling?

Explore the properties of matrix transformations with these 10 stimulating questions.

Explore the shape of a square after it is transformed by the action of a matrix.

Explore the meaning behind the algebra and geometry of matrices with these 10 individual problems.

Explore the meaning of the scalar and vector cross products and see how the two are related.

Can you make matrices which will fix one lucky vector and crush another to zero?

Use vectors and matrices to explore the symmetries of crystals.

In this short problem, can you deduce the likely location of the odd ones out in six sets of random numbers?

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

Can you work out which processes are represented by the graphs?

Looking at small values of functions. Motivating the existence of the Taylor expansion.

Which dilutions can you make using only 10ml pipettes?