Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Formulate and investigate a simple mathematical model for the design of a table mat.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Which countries have the most naturally athletic populations?

Which units would you choose best to fit these situations?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Get some practice using big and small numbers in chemistry.

Which dilutions can you make using only 10ml pipettes?

Explore the relationship between resistance and temperature

When you change the units, do the numbers get bigger or smaller?

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Can you deduce which Olympic athletics events are represented by the graphs?

Simple models which help us to investigate how epidemics grow and die out.

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Where should runners start the 200m race so that they have all run the same distance by the finish?

Can you sketch graphs to show how the height of water changes in different containers as they are filled?

Examine these estimates. Do they sound about right?

Make your own pinhole camera for safe observation of the sun, and find out how it works.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Have you ever wondered what it would be like to race against Usain Bolt?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Can Jo make a gym bag for her trainers from the piece of fabric she has?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Analyse these beautiful biological images and attempt to rank them in size order.

How would you go about estimating populations of dolphins?

Two trains set off at the same time from each end of a single straight railway line. A very fast bee starts off in front of the first train and flies continuously back and forth between the. . . .

How would you design the tiering of seats in a stadium so that all spectators have a good view?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Work out the numerical values for these physical quantities.

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

Can you draw the height-time chart as this complicated vessel fills with water?

The triathlon is a physically gruelling challenge. Can you work out which athlete burnt the most calories?

These Olympic quantities have been jumbled up! Can you put them back together again?