Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Have you ever wondered what it would be like to race against Usain Bolt?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Simple models which help us to investigate how epidemics grow and die out.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

How would you go about estimating populations of dolphins?

Formulate and investigate a simple mathematical model for the design of a table mat.

Make your own pinhole camera for safe observation of the sun, and find out how it works.

What shape would fit your pens and pencils best? How can you make it?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Where should runners start the 200m race so that they have all run the same distance by the finish?

Can you deduce which Olympic athletics events are represented by the graphs?

Can Jo make a gym bag for her trainers from the piece of fabric she has?

How would you design the tiering of seats in a stadium so that all spectators have a good view?

Examine these estimates. Do they sound about right?

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

Can you sketch graphs to show how the height of water changes in different containers as they are filled?

Get some practice using big and small numbers in chemistry.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Which dilutions can you make using only 10ml pipettes?

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

These Olympic quantities have been jumbled up! Can you put them back together again?

When you change the units, do the numbers get bigger or smaller?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Which units would you choose best to fit these situations?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Which countries have the most naturally athletic populations?

Explore the relationship between resistance and temperature

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Can you rank these sets of quantities in order, from smallest to largest? Can you provide convincing evidence for your rankings?

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Work out the numerical values for these physical quantities.

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

This problem explores the biology behind Rudolph's glowing red nose.