Have you ever wondered what it would be like to race against Usain Bolt?

These Olympic quantities have been jumbled up! Can you put them back together again?

Two trains set off at the same time from each end of a single straight railway line. A very fast bee starts off in front of the first train and flies continuously back and forth between the. . . .

The triathlon is a physically gruelling challenge. Can you work out which athlete burnt the most calories?

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

How would you go about estimating populations of dolphins?

Can you deduce which Olympic athletics events are represented by the graphs?

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

When you change the units, do the numbers get bigger or smaller?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Can you rank these sets of quantities in order, from smallest to largest? Can you provide convincing evidence for your rankings?

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Can you sketch graphs to show how the height of water changes in different containers as they are filled?

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Which dilutions can you make using only 10ml pipettes?

Which countries have the most naturally athletic populations?

Make your own pinhole camera for safe observation of the sun, and find out how it works.

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Which units would you choose best to fit these situations?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

What shape would fit your pens and pencils best? How can you make it?

Examine these estimates. Do they sound about right?

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Get some practice using big and small numbers in chemistry.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

If I don't have the size of cake tin specified in my recipe, will the size I do have be OK?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Analyse these beautiful biological images and attempt to rank them in size order.

This problem explores the biology behind Rudolph's glowing red nose.

Explore the relationship between resistance and temperature

How would you design the tiering of seats in a stadium so that all spectators have a good view?

Invent a scoring system for a 'guess the weight' competition.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Simple models which help us to investigate how epidemics grow and die out.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.