Two trains set off at the same time from each end of a single straight railway line. A very fast bee starts off in front of the first train and flies continuously back and forth between the. . . .

The triathlon is a physically gruelling challenge. Can you work out which athlete burnt the most calories?

What shape would fit your pens and pencils best? How can you make it?

Have you ever wondered what it would be like to race against Usain Bolt?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Can you rank these sets of quantities in order, from smallest to largest? Can you provide convincing evidence for your rankings?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Formulate and investigate a simple mathematical model for the design of a table mat.

Can you sketch graphs to show how the height of water changes in different containers as they are filled?

Can Jo make a gym bag for her trainers from the piece of fabric she has?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

If I don't have the size of cake tin specified in my recipe, will the size I do have be OK?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Explore the relationship between resistance and temperature

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Get some practice using big and small numbers in chemistry.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

These Olympic quantities have been jumbled up! Can you put them back together again?

When you change the units, do the numbers get bigger or smaller?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

How would you go about estimating populations of dolphins?

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Can you deduce which Olympic athletics events are represented by the graphs?

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Which dilutions can you make using only 10ml pipettes?

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Simple models which help us to investigate how epidemics grow and die out.

Which units would you choose best to fit these situations?

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

Where should runners start the 200m race so that they have all run the same distance by the finish?

How would you design the tiering of seats in a stadium so that all spectators have a good view?