Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Simple models which help us to investigate how epidemics grow and die out.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Formulate and investigate a simple mathematical model for the design of a table mat.

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Examine these estimates. Do they sound about right?

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Get some practice using big and small numbers in chemistry.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Work out the numerical values for these physical quantities.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Can Jo make a gym bag for her trainers from the piece of fabric she has?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Which dilutions can you make using only 10ml pipettes?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Which units would you choose best to fit these situations?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

When you change the units, do the numbers get bigger or smaller?

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

How would you design the tiering of seats in a stadium so that all spectators have a good view?

Where should runners start the 200m race so that they have all run the same distance by the finish?

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

What shape would fit your pens and pencils best? How can you make it?

Can you work out which processes are represented by the graphs?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Analyse these beautiful biological images and attempt to rank them in size order.

Can you draw the height-time chart as this complicated vessel fills with water?

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Make your own pinhole camera for safe observation of the sun, and find out how it works.

How would you go about estimating populations of dolphins?

Can you deduce which Olympic athletics events are represented by the graphs?

Various solids are lowered into a beaker of water. How does the water level rise in each case?

Which countries have the most naturally athletic populations?

Explore the relationship between resistance and temperature

10 graphs of experimental data are given. Can you use a spreadsheet to find algebraic graphs which match them closely, and thus discover the formulae most likely to govern the underlying processes?

Starting with two basic vector steps, which destinations can you reach on a vector walk?