Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

What is the same and what is different about these circle questions? What connections can you make?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Which set of numbers that add to 10 have the largest product?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

Can you find the area of a parallelogram defined by two vectors?

Substitute -1, -2 or -3, into an algebraic expression and you'll get three results. Is it possible to tell in advance which of those three will be the largest ?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Find the decimal equivalents of the fractions one ninth, one ninety ninth, one nine hundred and ninety ninth etc. Explain the pattern you get and generalise.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Can you describe this route to infinity? Where will the arrows take you next?

Stick some cubes together to make a cuboid. Find two of the angles by as many different methods as you can devise.

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Use the differences to find the solution to this Sudoku.

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

The clues for this Sudoku are the product of the numbers in adjacent squares.

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.