Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

How many different symmetrical shapes can you make by shading triangles or squares?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Explore the effect of reflecting in two parallel mirror lines.

Can you find rectangles where the value of the area is the same as the value of the perimeter?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Explore the effect of combining enlargements.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Can you describe this route to infinity? Where will the arrows take you next?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.