Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can all unit fractions be written as the sum of two unit fractions?

Explore the effect of reflecting in two parallel mirror lines.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try. . . .

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Explore the effect of combining enlargements.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Use the differences to find the solution to this Sudoku.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Think of two whole numbers under 10. Take one of them and add 1. Multiply by 5. Add 1 again. Double your answer. Subract 1. Add your second number. Add 2. Double again. Subtract 8. Halve this. . . .

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The clues for this Sudoku are the product of the numbers in adjacent squares.

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Which set of numbers that add to 10 have the largest product?

How many different symmetrical shapes can you make by shading triangles or squares?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?