Can you find rectangles where the value of the area is the same as the value of the perimeter?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

What is the same and what is different about these circle questions? What connections can you make?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Think of two whole numbers under 10. Take one of them and add 1. Multiply by 5. Add 1 again. Double your answer. Subract 1. Add your second number. Add 2. Double again. Subtract 8. Halve this number. . . .

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Explore the effect of reflecting in two parallel mirror lines.

Explore the effect of combining enlargements.

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Can you find the area of a parallelogram defined by two vectors?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Can all unit fractions be written as the sum of two unit fractions?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?