Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Which set of numbers that add to 10 have the largest product?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Can you describe this route to infinity? Where will the arrows take you next?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

If a sum invested gains 10% each year how long before it has doubled its value?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Can you find the area of a parallelogram defined by two vectors?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

There are lots of different methods to find out what the shapes are worth - how many can you find?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Find the decimal equivalents of the fractions one ninth, one ninety ninth, one nine hundred and ninety ninth etc. Explain the pattern you get and generalise.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

What is the same and what is different about these circle questions? What connections can you make?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Explore the effect of reflecting in two parallel mirror lines.