Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Can you describe this route to infinity? Where will the arrows take you next?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you find the area of a parallelogram defined by two vectors?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

There are lots of different methods to find out what the shapes are worth - how many can you find?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Explore the effect of combining enlargements.

Explore the effect of reflecting in two parallel mirror lines.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

If you move the tiles around, can you make squares with different coloured edges?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Can all unit fractions be written as the sum of two unit fractions?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

If a sum invested gains 10% each year how long before it has doubled its value?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?