Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Which of these games would you play to give yourself the best possible chance of winning a prize?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

There are lots of different methods to find out what the shapes are worth - how many can you find?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

How many different symmetrical shapes can you make by shading triangles or squares?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Use the differences to find the solution to this Sudoku.

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .