Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

The clues for this Sudoku are the product of the numbers in adjacent squares.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Use the differences to find the solution to this Sudoku.

Can all unit fractions be written as the sum of two unit fractions?

Explore the effect of combining enlargements.

How many different symmetrical shapes can you make by shading triangles or squares?

Explore the effect of reflecting in two parallel mirror lines.

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?