Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Explore the effect of reflecting in two parallel mirror lines.

Can all unit fractions be written as the sum of two unit fractions?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Explore the effect of combining enlargements.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you describe this route to infinity? Where will the arrows take you next?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A jigsaw where pieces only go together if the fractions are equivalent.

Can you find the area of a parallelogram defined by two vectors?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

How many different symmetrical shapes can you make by shading triangles or squares?

The sums of the squares of three related numbers is also a perfect square - can you explain why?