A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Can all unit fractions be written as the sum of two unit fractions?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Can you find the area of a parallelogram defined by two vectors?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Explore the effect of combining enlargements.

Can you describe this route to infinity? Where will the arrows take you next?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Explore the effect of reflecting in two parallel mirror lines.

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

How many winning lines can you make in a three-dimensional version of noughts and crosses?

If a sum invested gains 10% each year how long before it has doubled its value?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

A jigsaw where pieces only go together if the fractions are equivalent.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Which of these games would you play to give yourself the best possible chance of winning a prize?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?