Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Can all unit fractions be written as the sum of two unit fractions?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Explore the effect of combining enlargements.

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

How many different symmetrical shapes can you make by shading triangles or squares?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

If you move the tiles around, can you make squares with different coloured edges?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Can you find the area of a parallelogram defined by two vectors?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Is there an efficient way to work out how many factors a large number has?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?