Can you find rectangles where the value of the area is the same as the value of the perimeter?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Explore the effect of combining enlargements.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Explore the effect of reflecting in two parallel mirror lines.

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

How many different symmetrical shapes can you make by shading triangles or squares?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Can you find the area of a parallelogram defined by two vectors?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Can all unit fractions be written as the sum of two unit fractions?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A jigsaw where pieces only go together if the fractions are equivalent.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?