The sums of the squares of three related numbers is also a perfect square - can you explain why?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Can you find the area of a parallelogram defined by two vectors?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Can all unit fractions be written as the sum of two unit fractions?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

If a sum invested gains 10% each year how long before it has doubled its value?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Think of two whole numbers under 10. Take one of them and add 1. Multiply by 5. Add 1 again. Double your answer. Subract 1. Add your second number. Add 2. Double again. Subtract 8. Halve this number. . . .

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Explore the effect of combining enlargements.

Explore the effect of reflecting in two parallel mirror lines.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you describe this route to infinity? Where will the arrows take you next?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?