Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Can you find the area of a parallelogram defined by two vectors?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Explore the effect of combining enlargements.

Explore the effect of reflecting in two parallel mirror lines.

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

If you move the tiles around, can you make squares with different coloured edges?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Can you describe this route to infinity? Where will the arrows take you next?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can all unit fractions be written as the sum of two unit fractions?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Which set of numbers that add to 10 have the largest product?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?