Search by Topic

Resources tagged with smartphone similar to Weekly Problem 2 - 2009:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 118 results

Broad Topics > Information and Communications Technology > smartphone

problem icon

Semi-detached

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

problem icon

Inscribed in a Circle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

problem icon

Mirror, Mirror...

Stage: 3 Challenge Level: Challenge Level:1

Explore the effect of reflecting in two parallel mirror lines.

problem icon

Compare Areas

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

problem icon

Can They Be Equal?

Stage: 3 Challenge Level: Challenge Level:1

Can you find rectangles where the value of the area is the same as the value of the perimeter?

problem icon

Curvy Areas

Stage: 4 Challenge Level: Challenge Level:1

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

problem icon

Circles in Quadrilaterals

Stage: 4 Challenge Level: Challenge Level:1

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

problem icon

Ladder and Cube

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

problem icon

Shady Symmetry

Stage: 3 Challenge Level: Challenge Level:1

How many different symmetrical shapes can you make by shading triangles or squares?

problem icon

An Unusual Shape

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you maximise the area available to a grazing goat?

problem icon

The Spider and the Fly

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

problem icon

Partly Circles

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the same and what is different about these circle questions? What connections can you make?

problem icon

Napkin

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

problem icon

Who Is the Fairest of Them All?

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore the effect of combining enlargements.

problem icon

Terminology

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

problem icon

Make 37

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

problem icon

Salinon

Stage: 4 Challenge Level: Challenge Level:1

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

problem icon

Orbiting Billiard Balls

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

problem icon

On the Edge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

problem icon

Sweet Shop

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

problem icon

Marbles in a Box

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

problem icon

Children at Large

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

problem icon

Squares in Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

problem icon

Circle-in

Stage: 4 Challenge Level: Challenge Level:1

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

problem icon

Attractive Rotations

Stage: 3 Challenge Level: Challenge Level:1

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

problem icon

Handshakes

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

problem icon

Nicely Similar

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

problem icon

Eight Hidden Squares

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

problem icon

Think of Two Numbers

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Think of two whole numbers under 10. Take one of them and add 1. Multiply by 5. Add 1 again. Double your answer. Subract 1. Add your second number. Add 2. Double again. Subtract 8. Halve this number. . . .

problem icon

Beelines

Stage: 4 Challenge Level: Challenge Level:1

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

problem icon

Route to Infinity

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you describe this route to infinity? Where will the arrows take you next?

problem icon

Weights

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Different combinations of the weights available allow you to make different totals. Which totals can you make?

problem icon

Two Ladders

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

problem icon

Quadrilaterals Game

Stage: 3 Challenge Level: Challenge Level:1

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

problem icon

Tet-trouble

Stage: 4 Challenge Level: Challenge Level:1

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

problem icon

Areas of Parallelograms

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find the area of a parallelogram defined by two vectors?

problem icon

Elevenses

Stage: 3 Challenge Level: Challenge Level:1

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

problem icon

Qqq..cubed

Stage: 4 Challenge Level: Challenge Level:1

It is known that the area of the largest equilateral triangular section of a cube is 140sq cm. What is the side length of the cube? The distances between the centres of two adjacent faces of. . . .

problem icon

1 Step 2 Step

Stage: 3 Challenge Level: Challenge Level:1

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Hexy-metry

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

problem icon

Special Numbers

Stage: 3 Challenge Level: Challenge Level:1

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

problem icon

Sissa's Reward

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Litov's Mean Value Theorem

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

problem icon

Fractions Jigsaw

Stage: 3 Challenge Level: Challenge Level:1

A jigsaw where pieces only go together if the fractions are equivalent.

problem icon

One and Three

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

problem icon

Arclets

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

problem icon

Cuboid Challenge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?