Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Can you describe this route to infinity? Where will the arrows take you next?

It is known that the area of the largest equilateral triangular section of a cube is 140sq cm. What is the side length of the cube? The distances between the centres of two adjacent faces of. . . .

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Use the differences to find the solution to this Sudoku.

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

The clues for this Sudoku are the product of the numbers in adjacent squares.

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

How many different symmetrical shapes can you make by shading triangles or squares?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?